3.3.89 \(\int \text {sech}^3(c+d x) (a+b \sinh ^2(c+d x)) \, dx\) [289]

Optimal. Leaf size=42 \[ \frac {(a+b) \text {ArcTan}(\sinh (c+d x))}{2 d}+\frac {(a-b) \text {sech}(c+d x) \tanh (c+d x)}{2 d} \]

[Out]

1/2*(a+b)*arctan(sinh(d*x+c))/d+1/2*(a-b)*sech(d*x+c)*tanh(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 42, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3269, 393, 209} \begin {gather*} \frac {(a+b) \text {ArcTan}(\sinh (c+d x))}{2 d}+\frac {(a-b) \tanh (c+d x) \text {sech}(c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^3*(a + b*Sinh[c + d*x]^2),x]

[Out]

((a + b)*ArcTan[Sinh[c + d*x]])/(2*d) + ((a - b)*Sech[c + d*x]*Tanh[c + d*x])/(2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 393

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
 + 1)/(a*b*n*(p + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x]
 /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 3269

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \text {sech}^3(c+d x) \left (a+b \sinh ^2(c+d x)\right ) \, dx &=\frac {\text {Subst}\left (\int \frac {a+b x^2}{\left (1+x^2\right )^2} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac {(a-b) \text {sech}(c+d x) \tanh (c+d x)}{2 d}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{2 d}\\ &=\frac {(a+b) \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac {(a-b) \text {sech}(c+d x) \tanh (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 71, normalized size = 1.69 \begin {gather*} \frac {a \text {ArcTan}(\sinh (c+d x))}{2 d}+\frac {b \text {ArcTan}(\sinh (c+d x))}{2 d}+\frac {a \text {sech}(c+d x) \tanh (c+d x)}{2 d}-\frac {b \text {sech}(c+d x) \tanh (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^3*(a + b*Sinh[c + d*x]^2),x]

[Out]

(a*ArcTan[Sinh[c + d*x]])/(2*d) + (b*ArcTan[Sinh[c + d*x]])/(2*d) + (a*Sech[c + d*x]*Tanh[c + d*x])/(2*d) - (b
*Sech[c + d*x]*Tanh[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 2.00, size = 109, normalized size = 2.60

method result size
risch \(\frac {{\mathrm e}^{d x +c} \left (a -b \right ) \left ({\mathrm e}^{2 d x +2 c}-1\right )}{d \left (1+{\mathrm e}^{2 d x +2 c}\right )^{2}}+\frac {i \ln \left ({\mathrm e}^{d x +c}+i\right ) a}{2 d}+\frac {i \ln \left ({\mathrm e}^{d x +c}+i\right ) b}{2 d}-\frac {i \ln \left ({\mathrm e}^{d x +c}-i\right ) a}{2 d}-\frac {i \ln \left ({\mathrm e}^{d x +c}-i\right ) b}{2 d}\) \(109\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

exp(d*x+c)*(a-b)*(exp(2*d*x+2*c)-1)/d/(1+exp(2*d*x+2*c))^2+1/2*I/d*ln(exp(d*x+c)+I)*a+1/2*I/d*ln(exp(d*x+c)+I)
*b-1/2*I/d*ln(exp(d*x+c)-I)*a-1/2*I/d*ln(exp(d*x+c)-I)*b

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 136 vs. \(2 (38) = 76\).
time = 0.47, size = 136, normalized size = 3.24 \begin {gather*} -b {\left (\frac {\arctan \left (e^{\left (-d x - c\right )}\right )}{d} + \frac {e^{\left (-d x - c\right )} - e^{\left (-3 \, d x - 3 \, c\right )}}{d {\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} - a {\left (\frac {\arctan \left (e^{\left (-d x - c\right )}\right )}{d} - \frac {e^{\left (-d x - c\right )} - e^{\left (-3 \, d x - 3 \, c\right )}}{d {\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

-b*(arctan(e^(-d*x - c))/d + (e^(-d*x - c) - e^(-3*d*x - 3*c))/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) + 1))
) - a*(arctan(e^(-d*x - c))/d - (e^(-d*x - c) - e^(-3*d*x - 3*c))/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) +
1)))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 324 vs. \(2 (38) = 76\).
time = 0.38, size = 324, normalized size = 7.71 \begin {gather*} \frac {{\left (a - b\right )} \cosh \left (d x + c\right )^{3} + 3 \, {\left (a - b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + {\left (a - b\right )} \sinh \left (d x + c\right )^{3} + {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a + b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} + {\left (a + b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b\right )} \arctan \left (\cosh \left (d x + c\right ) + \sinh \left (d x + c\right )\right ) - {\left (a - b\right )} \cosh \left (d x + c\right ) + {\left (3 \, {\left (a - b\right )} \cosh \left (d x + c\right )^{2} - a + b\right )} \sinh \left (d x + c\right )}{d \cosh \left (d x + c\right )^{4} + 4 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + d \sinh \left (d x + c\right )^{4} + 2 \, d \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, d \cosh \left (d x + c\right )^{2} + d\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left (d \cosh \left (d x + c\right )^{3} + d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

((a - b)*cosh(d*x + c)^3 + 3*(a - b)*cosh(d*x + c)*sinh(d*x + c)^2 + (a - b)*sinh(d*x + c)^3 + ((a + b)*cosh(d
*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a + b)*cosh(d*x + c)^2 + 2*
(3*(a + b)*cosh(d*x + c)^2 + a + b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a + b)*cosh(d*x + c))*sinh
(d*x + c) + a + b)*arctan(cosh(d*x + c) + sinh(d*x + c)) - (a - b)*cosh(d*x + c) + (3*(a - b)*cosh(d*x + c)^2
- a + b)*sinh(d*x + c))/(d*cosh(d*x + c)^4 + 4*d*cosh(d*x + c)*sinh(d*x + c)^3 + d*sinh(d*x + c)^4 + 2*d*cosh(
d*x + c)^2 + 2*(3*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^2 + 4*(d*cosh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x +
c) + d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \sinh ^{2}{\left (c + d x \right )}\right ) \operatorname {sech}^{3}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**3*(a+b*sinh(d*x+c)**2),x)

[Out]

Integral((a + b*sinh(c + d*x)**2)*sech(c + d*x)**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 105 vs. \(2 (38) = 76\).
time = 0.42, size = 105, normalized size = 2.50 \begin {gather*} \frac {{\left (\pi + 2 \, \arctan \left (\frac {1}{2} \, {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )} e^{\left (-d x - c\right )}\right )\right )} {\left (a + b\right )} + \frac {4 \, {\left (a {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )} - b {\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}\right )}}{{\left (e^{\left (d x + c\right )} - e^{\left (-d x - c\right )}\right )}^{2} + 4}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^3*(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

1/4*((pi + 2*arctan(1/2*(e^(2*d*x + 2*c) - 1)*e^(-d*x - c)))*(a + b) + 4*(a*(e^(d*x + c) - e^(-d*x - c)) - b*(
e^(d*x + c) - e^(-d*x - c)))/((e^(d*x + c) - e^(-d*x - c))^2 + 4))/d

________________________________________________________________________________________

Mupad [B]
time = 0.12, size = 127, normalized size = 3.02 \begin {gather*} \frac {\mathrm {atan}\left (\frac {{\mathrm {e}}^{d\,x}\,{\mathrm {e}}^c\,\left (a\,\sqrt {d^2}+b\,\sqrt {d^2}\right )}{d\,\sqrt {a^2+2\,a\,b+b^2}}\right )\,\sqrt {a^2+2\,a\,b+b^2}}{\sqrt {d^2}}+\frac {{\mathrm {e}}^{c+d\,x}\,\left (a-b\right )}{d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )}-\frac {2\,{\mathrm {e}}^{c+d\,x}\,\left (a-b\right )}{d\,\left (2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sinh(c + d*x)^2)/cosh(c + d*x)^3,x)

[Out]

(atan((exp(d*x)*exp(c)*(a*(d^2)^(1/2) + b*(d^2)^(1/2)))/(d*(2*a*b + a^2 + b^2)^(1/2)))*(2*a*b + a^2 + b^2)^(1/
2))/(d^2)^(1/2) + (exp(c + d*x)*(a - b))/(d*(exp(2*c + 2*d*x) + 1)) - (2*exp(c + d*x)*(a - b))/(d*(2*exp(2*c +
 2*d*x) + exp(4*c + 4*d*x) + 1))

________________________________________________________________________________________